PHYS 58F HWA2. Due Mon Mar 16 'th at lecture hours.

1. Solve problems 3.1.7,8,9.
2. Read section 3.2 (start by reading 3.1.11) on induced metrics and solve problems 3.2.2,3,4,8.
3. In addition to the above consider an embedding of S^{1} into \mathbb{R}^{2} and find the induced metric on S^{1} due to the standard metric on the Euclidean plane.
4. Consider \mathbb{R}^{2} with the special relativistic metric η (the Minkowski space \mathbb{M}) given as

$$
\eta=\eta_{i j} d x^{i} \otimes d x^{j}=d x^{1} \otimes d x^{1}-d x^{2} \otimes d x^{2}
$$

Now perform a map from S^{1} to this space, as if you would do to ordinary Euclidean plane, and find the induced metric on S^{1}. In some regions for the co-ordinate on S^{1} which we shall call ϕ the metric will be positive and in some regions it will be negative. Try to make a connection to the space-like, time-like and null intervals in special relativity.
5. Now consider the map from $T^{2} \approx S^{1} \times S^{1}$ to $\mathbb{M} \times \mathbb{M}$ generalizing the above example. Find the metric induced on the Torus. Note that in $\mathbb{M} \times \mathbb{M}$ there will be 2 minus signs in the metric. Compare this to one of the previous questions.
6. Now consider a light source sitting at the origin at \mathbb{R}^{2}, for our purposes these are rays coming out of origin. Assume one is to walk in such a way that the direction of the walk always has constant angle α in relation to the outcoming rays. Show that this results in a spiral motion away or toward the origin. Try to use the notation we are using thus far in defining vectors and their integral curves. After that make a point on why moths would tend to fly near an artificial light source at night. Do you think they are in "love" with the light now?
7. Consider $M=\mathbb{R}[x]$ and a vector field on it given as $V=\partial_{x}$. Show that the integral curves of this vector field is in the co-ordinate basis as $x(t)=x_{o}+t$, hence the vector field is complete. Now consider the vector flow map of this vector field, $\Phi_{t}: M \rightarrow M$. For convenience you can call the image manifold $M^{\prime}=\mathbb{R}[y]$. Show that the action of the flow is given in the co-ordinate basis as $y=x+t$-recall that the flow map is along the direction of the integral curve. Now imagine a function $\psi: M^{\prime} \rightarrow \mathbb{R}[s]$, as we know the pull-back map on M is given as $\Phi_{t}^{*} \psi=\psi \circ \Phi_{t}$. Show that one gets $s=\psi(x+t)$ under this map. Now consider a copy of the function ψ this time from $M \rightarrow \mathbb{R}[\sigma]$ we now that in the co-ordinate representation it is given as $\sigma=f(x)$. We can thus see the situation as if we have two different functions defined at $P \in M$-with co-ordinate x - and we would like to compare them. This is one way of seeing the effect of the Lie derivative: Show of course that in this case we have $\mathcal{L}_{V} \psi=V \psi$ which in the co-ordinate basis gives $\partial_{x} \psi(x)=\partial \psi(x) / \partial x$. In the following there is a diagram of this situation,

Digression: To be strict we do not need to use pull-backs to compare functions at different points of a manifold. True, we have identified $\mathcal{T}_{0}^{0}(M)=\mathcal{F}(M)$ but this was mainly to have a combined prescription, with general tensor fields. The recipe is simple, say we would like to compare the values of a function ψ at different points on the manifold P and Q all we have to do is to subtract from ψ a function which is a multiple of identity, that is $f(Q) \operatorname{Id}_{M}$. This way we get a new function which gives zero at the point Q and the other values are just the differences. Clearly we can not do this for instance for vector fields because not every manifold would allow for a constant vector field (remember the fact that there can be no vector field without a zero on the sphere). Nevertheless it is a good practice to use pull-backs for functions.
7.1 Yet another way to visualize the pull-back of functions on manifolds is via the graph of the function. For simplicity we shall consider the case where $M=\mathbb{R}[x]$. Now consider a function $\psi: M \rightarrow \mathbb{R}[\sigma]$. The graph of a function can be defined as the map from $M \times \mathbb{R}[\sigma] \rightarrow \mathbb{R}^{2}\left[x_{1}, x_{2}\right]$ where one simply posits $(x, \sigma) \mapsto\left(x_{1}, x_{2}\right)$. Now let us again recall the vector field above and its flow to a $M^{\prime}=\mathbb{R}[y]$ and the associated pull-back of the copy of ψ this time from $M^{\prime} \rightarrow \mathbb{R}[s]$. Similarly one can also construct the graph of this pulled back object from $M^{\prime} \times \mathbb{R}[s] \rightarrow \mathbb{R}^{2}\left[x_{1}, x_{2}\right]$. One gets the following graph

Note that the solid curve is the graph of the pulled back function, and it is slided against the flow of the vector field ∂_{x}. You should also read 4.2.2, which is along the same lines, I have tired to make the exposition a bit redundant to clarify it.
8. Now replace $V=x \partial_{x}$ in problem 1. Find first the integral curves of V. Than assume a function ψ on M and find its pull-back and represent it in the co-ordinate basis and finally compute $\mathcal{L}_{V} \psi$. Incidentally consider the finite difference $\Phi_{t}^{*} \psi-\psi$ and represent it in the co-ordinate basis. This is related to what is called the q-derivative -you can further elaborate with M.Arık, if you are interested- of a function which is given as

$$
D_{q} f=\frac{f(q x)-f(x)}{q-1}
$$

which in the limit $q \rightarrow 1$ becomes the ordinary derivative times x. Of course in the previous problem the associated object is the discrete difference given as $(f(x+t)-f(x)) / t$. So you can have you beloved definition of a derivative but a vector field will be associated to it.
9. Now consider the vector fields we have so far seen, $V=\partial_{x}$ and $W=x \partial_{x}$. Consider the flows defined for each and calculate the effect of the following composition of flow on a point on the manifold M with co-ordinate x.

$$
\Phi_{V t} \circ \Phi_{W t} \circ \Phi_{V-t} \circ \Phi_{W-t}
$$

Now set $t=\epsilon$ and expand to the first non-trivial order in ϵ.
Now calculate $U=\mathcal{L}_{V} W$-which is of course $-\mathcal{L}_{W} V$ - which is a vector field itself. Study the effect of the flow $\Phi_{U \tau}$ on a point on the manifold M with co-ordinate x and make a connection to τ and ϵ to first non-trivial order.
10. Read 4.1.10, 4.1.11, 4.1.12 and solve 4.1.14.

For what follows also read 4.2.3 for the visualization of the pull back of vector fields under diffeo-morphisms.
11. Consider $M=\mathbb{R}^{2}[x, y]$ and the vector fields $V=\partial_{x}$ and $W=x \partial_{x}+y \partial_{y}$ on them. First find the integral curves of V and W. Now pull back W in relation to the flow generated by V, and calculate the finite difference $\Phi_{V t}{ }^{*} W-W$. Geometrically represent this difference vector, using ordinary $\hat{\imath}$ and $\hat{\jmath}$ unit vectors we use on the plane. Now consider setting $t=\epsilon$ and express the lowest nontrivial contribution for the above. Now calculate $\mathcal{L}_{V} W=[V, W]$ and compare the results.
12. Repeat the above with $W=x \partial_{y}-y \partial_{x}$ and $V=\partial_{x}$.
13. Now consider $M=S^{2}$, the two dimensional sphere. Construct vector fields associated with the meridians and parallels; call them V and W respectively. Note that meridians do not intersect among themselves (similarly for the parallels) and hence they tear up the manifold. Use the embedding in 3.2.4. After this calculate $\mathcal{L}_{V} W$ and interpret in terms of the parallelograms language.
14. Remember the description of the torus $T^{2}=S^{1} \times S^{1}$ in 1.5 .11 . Using the boundary conditions on the square consider the family of straight lines starting from a point, with a definite slope. Which ones close after a finite parameter travel along the curves? Are there curves that never close on themselves? If so can you say they constitute a single vector field that tear up the torus? Remember the relative densities of subsets of real numbers: integers, fractions, irrationals and trancendentals.

