Electric Dipole Radiation

Physics 202
Summer 2009

Notes compiled by Alpar Sevgen

In these notes electric dipole radiation is discussed.

I found the following references very useful:[1] and [2].



1. Electric Dipole Radiation

Accelerating electric charges emit electromagnetic radiation. These radia-
tion fields have the following characteristics

e Radiation fields Fy, Br behave as % at large distances r — 0.

e Fp, ¢cBr and ¥ (direction of propagation) form a right-handed triad,
and thus Ey ,, ¢ By, are transverse fields.
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Figure 1: Eg ,, ¢ Bp , are transverse fields

e Ep and Bp are proportional to the acceleration @ of the charges.

e F'p and By depend on the retarded time:

R
t'=t——  where R = |/~ ], (1)
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Figure 2: The radiation fields Eg, Bg observed at (7,t) depend on the re-
tarded source time t' =t — R/c, Eq.(1).

We now specialize to the case where the wavelength A of the radiation is much
larger than the maximum linear dimension D of the source region, that is
A >> D, and that the motions of charges are nonrelativistic %Q << 1, and
observation point is far away r >> A. In that case electric dipole approxi-
mation to the radiated field is very good, and we simply quote the result for

a dipole p(t) at the origin,

Sp1 o 1 DL phys (= 7/0)
EII;,]WM/s(T’t) = T dre.c? = 7“ ) (2)
oC

where L indicates perpendicular to . In many important cases p(t) has
harmonic time dependence

ﬁphysical = Re ﬁ(f) = RCﬁ,,(EHmt, (3)

where p, may be a complex valued vector. Then we set

ER, physical = ReFEiy (4)

and thus we can now use the complex valued fields

N 1 7 (t=r/c)
E]}i’,l(/r’t) = “47“‘ C2 = P * (5)

Let us now discuss the electric dipole

ﬁ(t) — ﬁoe—iwt
pt—rlc) = pewlt-r/o

e p—iwl Tk . W (
= pPoe e where k = ¢ (6)



and the perpendicular component reads

pL(t=r/c) = Por pilkr—wt) )

Acceleration of the dipole is easily computed

ﬁL (t—r/c)= —w?p,L ihr—wt), (8)

So that, for a harmonically varying electric dipole at the origin Eq.(5) gives

A 1 . Ci(kr»wt
E}%‘l(ﬂt) = (471'6 > kzpoL{ ‘“““T “‘}
“0
= (i) e (9)

This is such an important formula that we write it again with a box around
it. The term in the curly brackets is outgoing spherical wave with speed c.

— — (kr—w
El}%‘l(r’t) = <47}(0) kzp()_L {f’ 7 t}

The angle dependence of electric field comes from the perpendicular compo-
nent of the amplitude of the dipole amplitude

13*()J_ = ﬁo o f'ﬁoa (10)
where
t = sinf cosgp X + sinf singy + cosf z . (11)

Note that the vector p,, is orthogonal to the direction vector r, that is
r.p,. =0.

Since the fields are transverse as mentioned in the general properties of the
radiation, we can obtain the magnetic field, in the electric dipole approxima-
tion as

¢BE' =t x BB (12)

or explicitly as,

o 1 .2 ) . 6i(/c1'~wt
Blgl(/") t) = (47“: ) *‘(‘]—1' X PolL { r }
o g
= Lip(i) e (13)
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Radiated power (current of energy) passing through an infinitesimal spheri-
cal area is
dP = §. (¥ 12dQ) , (14)

(compare this to the current of charge passing through an infinitesimal area
dI = 7.1 da). Power radiated per unit solid angle is then

dP = ,, .
—675:3 (I"I“Z) y (15)
where S is the Poynting vector
S = €, (E]ng’p X Bg’lp) , (16)

where the fields are real. We are not interested in rapidly fluctuating instan-
taneous values, but in smoothly varying time-averaged quantities. Averaging
is done over the period of oscillation of the source. Thus the average power
radiated per unit solid angle is defined as

P 1 (T ap
ES_ZM‘I—"O dt*&-ﬁ-, (17)

where P indicates power averaged. Because of averaging, we can now use
the complex form of the fields. We will need a vector relation among vectors

-, -

(@xb)xé=b aé—a bé (18)

We now compute the time averaged power radiated (we also drop the super-
script F1 for simplicity of notation),

P,
il r°r. < S >

I

— —
*

1
= 60(32 7"2f'~§ Re (EOR X B()R) (19)

We now use the forms of E()R and ﬁoR given in Eqs.(9 and 12) in (19)

1 g ~ e 1)\ — ]_ — o=
= - (E:n, X I’) X Eop = =#|Eor|* — =B £.Eor
c c c
1 . =
= = 1Bl (20)



where in the middle line in (20) we used the vector relation (18) and the fact
that F,r is perpendicular to ¥ so that #.FE,r = 0. We put all these back into
the formula for the time averaged power radiated per unit solid angle, and

obtain

1P 1 kAP 1P
dQ) 4re, 7
where we use Eq.(10) and
|Foi|* = By Por = |Fo]* — |E.5" - (22)

The total average power radiated is obtained by integrating over all angles

— dP

In Eq.(23) integration over the solid angle Q means the integration over the
angles of the unit vector # given in (11), with F' a function of angles

2 ™
/ 00 F(Q) = / dF P(F) = / d / dosind F(0,8)  (24)
. . J O JO

And if F(6, ¢) is a function of p = cosf then by a change of variable (24)
becomes

v 29 1
/dQ F(Q) = / d(b/ dpe F(p, o) (25)
Jo J—1

Exercise 1. Electric dipole not at the origin

c_o
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Figure 3: A single dipole at the position @
Suppose an electric dipole is at the position 7y = @ where ¢ << r. You will
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now compute and find out what the fields are and how our formulas change.
The exact radiation electric field (in the dipole approximation) is

p LY e ikl —wt) ”
W . t = T‘() — —
r(7 1) (47%0) ¢ Pol { |7 — d } (26)

Pol = Po— T1 T1.p, withry = fi“: (27)

F—a|

where

The exact expression for the electric field of a displaced dipole (26) can be
simplified quite a bit because r >> a, that is the field is evaluated at very
large distances. In the following you will work on this simplification.

1. Show that, if ¥} = 7 — @, then

2. Show that

1 1 a 1
— =21 -0(—))%— 29
|7 —a fr( ! r r (29)

3. Show that

~ (30)

4. Show that

R T

e i where = kf. (31)

5. Thus the electric field of an electric dipole displaced from the origin
differs from the electric field of the same dipole at the origin by a pure
phase

B(a@) = e~ F(0). (32)

Note that in Eq.(32) , both fields are at the radiation zone (r — 00),
and we only indicated the dependence on the dipole position.

6. Show that the magnetic field is affected by the same phase,

B(d@) = e~ B(0). (33)



7. Show that the angular distribution of the radiated average power does
not change.

What did we learn from this important exercise?

1. If the electric dipole is displaced from the origin, the electric field ac-
quires an overall phase. This does not affect the power distribution.
That an overall phase will not affect the power distribution is clear from
Eq.(20), in taking the absolute square, overall pure phase disappears.

2. It is clear that when there are two or more dipoles, each dipole field
gets a phase depending on the position of the dipole, and thus when
we add these fields to get the total field in the radiation zone, those
phases will not be the same, and will be important.

E]’atal(ala (7:2, e ,(—I.:N) = 6~iEﬂl }jl (O) -+ C—iE.fig EQ (0)

+ok e By(0)

and the electric field of each dipole E;(0) differ only in the polarization
vector p,;, 1. Because different dipole fields have different phases, the
total electric field is not multiplied only by an overall phase, and thus
average radiated power per unit solid angle is certainly influenced by
these phases.

(34)

End of Exercise 1

Exercise 2. Dipole array

There are N electric dipoles oscillating harmonically with the same angu-
lar frequency w = ck.

N —ry Y ._L.
r G=°0-9

g~

7o ‘ 5 7e,
\P"%_ a;

Figure 4: A dipole array of N dipoles



1. Show that the total electric field in the radiation zone is given as

Erota(7,t) =Ey (7)) + Ey(7t) + ... + En(71)

" 1k —wt)
— 1 k‘z —ik.d@1 pnew (’(
- ¢ ol
47T6() T

(35)

her Pnew __ = )—sz.(('iz—(’il) -

where ol — Po1, L +e Doz, L
—ik.(dg—i1) = —ik @y —d1)
O T SR ) V)

2. Since 7; = T — d;, show for example that

(3zk(7*2—r1) ~~ e—zk‘(azﬁal) (36)
where

To — 1T = —“(Clg - (11).1‘ = I‘.(’I"Q - i’l) (37)

Thus, dipoles are being added together with their phase differences due
to the path differences in P, Note that if there are phase differences
at the sources, they are included in p,; terms.

3. Compare the forms of the electric fields in Eqs.(9 and 35). We see that

the only difference is that p,; — e~#-@ P™®_ Thus we can immediately
obtain the angular distribution of the average power from an arbitrary
dipole array by comparing with Eq(21),

E B 1 Ck’4|13:fw|2
A \4dre, s

; (38)

where P is defined by Eq.(35), and

s
l phnew

e 2 |]3'(')nawl2 N lf..ﬁ{zmwl‘z (39)

4. Total power has the same form again

— dP
P = —_—
/dQ 70 (40)
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End of Exercise 2

Various applications of radiations from dipole arrays involve using just Eqs.(35

and 38).

2. Examples

2.1 Dipole at the origin oriented along the z axis

2

T § “'Poé\ é‘:‘wt

Figure 5: Dipole at origin oriented along 2 axis

In this case p), = p, 2 coswt = Re poze” ™t So that P, = p,z. The average
power radiated was given in Eq(17). We have to compute |7, |?,

ﬁoLIQ - lﬁolQ - If'ﬁn 2
1Po]?(1 — cos?0) = |p,|*sin?0 (41)

So that average power radiated per unit solid angle is then

dP 1\ cklpol* .,
- <47r€0> rwab Ll 0, (42)

and the angular distribution of radiation is shown in Figure(6) below,

To get the total power we have to integrate over all angles, that is over the
directions of £, writing (42) as « sin?6, and inserting « explicitly at the end,

10



Figure 6: Angular distrubition for source in Fig.(5)

see Eqs.(24 and 25)

_P:/(lﬂg—]i

dQ
n T
= / d¢ / df sinf sin*@
Jo Jo
+1
=q 27 / du(1 — 1% (43)
J-
= 27 4/3

1 ek po)?
~ \ e, 3

2.2 Dipole at the origin rotating in the z,y plane
2

X Potys.

Figure 7: Dipole at the origin rotating in the z,y plane

The expression for the real physical dipole must be brought to the complex
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form e~
() =|po| (Reos(wt + 8) + Fsin(wt + 6))
=Re pe (44)
eV (% +iy).

o
Po = |p0

The electric field is given as in Eq.(9), and the time averaged power radiated
per unit solid angle is given by Eqs.(21 and 22),

L 1 s ei(lcr——wt)
ERN(Ft) = ( ) K2 [pole™ (% +i9) . {m} (4)

4re, r

Exercise 3.

1. What is the polarization in the +Z direction, that is ¥ = Z7 (Ans: right
circular)

2. polarization in the —2z direction?

3. polarization in the X direction? (Ans: Linear , parallel to y axis)

4. polarization in the § direction? (Ans: Linear , parallel to = axis)

5. polarization in the general ¥ direction, not parallel to any of the axes?

End of Exercise 3

In order to compute the power radiated per unit solid angle we must compute

¥ A

|ﬁ0L 2 :|ﬁa
5ol* =|pol® (X +4§) . (X — i¥) = 2|p,

and we continue to compute the remaining terms

l2 (46)

t.0, =po(sinb cosd + i sinf sing
o =pol i ) (47)
=p, sinf "
So that finally
1ol |” = |pol*(2 = 5i0%0) = |po|*(1 + cos®0). (48)
We can write the power radiated per unit solid angle now
dP 1\ ck|po|? ‘
— = 1+ cos*d 4¢
e) <4m0> g (LFcosD), (49)
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And the total power radiated is just the angular integral of (49). It is com-
puted easily (24 and 25), lumping the constants into «,

— dP +
= — = qdn + 2 s
P /dﬂ e adn + 7r/ dps pb*)

-1 (
1\ cklp,|?
B (471’60) 3 - 2.

It is interesting to note that the total power radiated by a rotating dipole
(50) is twice the power radiated by a linear dipole (43). Why is that so? It is
because a rotating dipole is equivalent to two linear dipoles oscillating with
a /2 phase between them. Show this.

2.3 Two dipoles along 2 axis, oscillating out of phase

ay {

%% {a

Figure 8: Two dipoles along z axis, oscillating out of phase

The dipoles and their positions are

- " g - a.,

P = poze ay = —2—2 (51)
n i a .,

Py = —poze W Gy = -~~2~z (52)

The electric field is given by (35) and

pnew __ = Ailg, ao—ay) —
ol =Do1,L+e (@ 1)p02,_L
=pot (1 — ¢ HF0)

rakeos @

=poe" 2 (—21’)37&7}(

akcos@\ |
Z)
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We note that 2,.2, = 1 — cos?) = sin?0 so that the time averaged power
per unit solid angle becomes

dP 1\ ckpol® ., .y (akcos
o sin?6 ( sin 54
dx (47”;(,) gr VAT (54)

Since ak << 1 and since sinx ~ x as © << 1, to a good approximation
Eq.(54) simplifies

= ; Al |2
dP__( ! )CA' 2 (ak)QsinQ()cosQH (55)

aa 4re, &

The radiation pattern is that of a quadrupole

k%

Figure 9: Quadrupole radiation

Total power is easy to find now (see (23, 24 and 25)).

Jz +1
. d J, N
— ( 1 ) ck*pol® N (ak)? = _ (ak)? (56)

Pox 2
ire, ) 3 5 LX

where P; is the total power radiated by a linear dipole Eq.(43). Note that
this total power radiated is much less than power radiated by a single dipole,
because the fields are largely cancelling each other.
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2.4 Two in phase dipoles paralel to z axis

INTERFERENCE

14

afy ¢
al *

Figure 10: Two in phase dipoles parallel to z axis
g I

(v

The dipoles and their positions are

5 = poze” Wt a; = =¥ 57

Z 1 0 2

- & —iwt — a. K

Yy = —PoZe Gy = —=— 58
5

The electric field is given by (35) and

Pnew -+ —ik (Ga—i1) =
ol =Pol, L T € @), 1

=po21 (1 + e #9))
jaksinbsing aksin 0 sin ¢ R
=D’ 2 cos ""‘—"‘“‘2““—“ Z,

Let us agree to detect the radiation along a line parallel to the y-axis as
shown in the figure, so § = 7/2, and Z, = 2. So, the time averaged power
per unit solid angle becomes

dP 1 ck*|po)? o (aksin¢
a0 (47r6,,> 8w 1| cos 2 (60)

It is better to consider the time averaged intensity of the radiation for this
geometry. Intensity is defined as the power per unit area, so

R 2 A__"ld_IS
I(r)—<S>.r.~TzdQ

=41, cos® (“’ksf':”gb) (1)
- o 3

2
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where I, is the intensity due to a single dipole,

1 ardly 12
r?I, ~ R*I, = 1 M"—l— (62)
dme, 8w
Equation(61) shows that intensity varies between zero, and four times the
single dipole value. Clearly we see the effect of interference. Waves from
the two dipoles are sometimes adding, sometimes subtracting, giving rise to
constructive or destructive interference.

In order to simplify drawing the interference pattern, however, let us make
a small angle approximation

h
R

where h is the position of observation. If we also define the characteristic
length h, as

sing = tang = (63)

AR
a
then we can write the intensity formula as

h, (64)

h,

I(h) = 41,co0s* <Zr—h-> , (65)

so that, the positions of maxima are hye, = nh, with n = 0,+1,4+2... and
minima are A, = (n+ 1/2)h, as shown in the figure below.

"‘o
t\o/ 2

Figure 11: Interference pattern
Note that if we had not made a small angle approximation, the intensity is

given by
g (TG
I = 41,cos? (—;\— szn(/)) (66)
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And I = 41, if asing,e, = nA and I = 0 if asingp, = (n+ 1/2)A. That is
when the path difference is a multiple of the wavelength there is a maximum,
and when the path difference equals full wavelengths plus a half-wavelength
intensity vanishes.

2 .5 N in phase dipoles paralel to z axis

INTERFERENCE
r3 A
b
%

2 L

Figure 12: N in phase dipoles parallel to z axis

The dipoles and their positions are

D1 = poZe ay =0y
Py = poge” ! ay = dy — ay
- —iwt o
D3 = pole 3 = a1 — 2ay
Py = poze ! iy = d; — (N - 1)ay

We want to compute the intensity in the same geometry as discussed in the
example 2.4 . The electric field is given by (35) and

b . e **if': P N }“
O =Py, 1 e @ G, e AN )poN_L (67)
=p QL(l + ()iaksin(b + 6732(11931'77@5 + + ()z(N ])akk,.smd))
=P, 2 . te
The sum in parenthesis in Eq.(67) is a geometric series

N—1 1

Sy_1 = E n’ = where n = ¢'* and o = aksin ¢, (68)
J=0

17



and Sy_; can be written as

i Na
a(n-1) [ 59173

SN—Al =¢'2 - (69)
sing
Thus the electric field in the x,y plane is (see also Eq.(35))
iy N i(kr—wt)
- 1 el SIN == e’
E = e"Hhap 5 i3 (V1) — (70)
4re, sing r

where we used the fact that on the x,y plane 2, = 2. The intensity can be
computed as in (61)
2

= 1 dP sinfe

T jruner i _A I e e O 0 A — 71
[(f) =< 5> 1 r2 dQ) sing (1)

In order to simplify the analysis of this intensity formula, let us restrict our-
selves to small angles so that

o  ak ak ma h h
= = —gind ~ —tand = —— = 71—  where h, = 2L, 72
22d2¢)\Lh0 =% (@)
Let us check this formula for the cases we know
1. N =1. In that case I(f) = I = o.
2. N = 2. In that case we have
. 9q 2
sin=e o ., h
I®) =1 — 2} =4],co8*— = 41, cos*t— 73
() =1 ( sing ) 2 ? I (73)

which is our old formula (65). Notice that maxima occur at h = nh,
with n = 0,41,42,... and minima at h = (n + $)h,.

We now consider the N-dipole array formula (71):

1. As h — 0, that means § — 0, then I = N 2],. This is because sinz — z
for v << 1.

2. What happens to the formula at zeros of the denominator other than

h =0, that is for sing — 0 for § — nx? Let us consider this as a

18



limiting procedure, and set § — nm + € with |¢] << 1. Since

sin =sinnm cos ¢ + cosnm sine = ecosnm = (—)"e
Na | .
s51n —5~ =sin Nnm cos Ne+ cos Nnw sin Ne (74)

~Necos Nnm = (—)""Ne

Inserting these limiting values in Eq.(71) we obtain

I=1, (t(ﬂﬁi)z = N?I,. (75)

_)ne

Thus we conclude that as § — nm, which is the same thing as h — nbh,
(where h, = Aa/L), intensity reaches maximum value I — N?I,. They are
called principal mazima. The positions of these maxima are the same as for
the case N = 2, but with the following differences

i) Intensity fringes are much brighter (instead of 41, we now have N?1,.

ii) Interference fringes are much sharper as we discuss below:

Between two principal maxima there are zeros of intensity when sin £2 = 0,
Na wh ) ,
=N—=mn, m=12,...,N—1. (76)
2 I

Note that in Eq.(76) the values m = 0 or m = N are missing since they
correspond to the positions of principal maxima. Thus in betwen neighboring
two principal maxima the distance is h, and, there are N — 1 intensity zeros
at the positions "ﬁ, 2’7‘\% o (N = 1)%

Obviously, in between N — 1 zeros of intensity, there must be N — 2 maxima.
What are their positions and what is the intensity at such points? Again to
simplify the <-omputation, if we consider N large, so that in between adjacent
zeros denominator sin § can be treated as a constant, then the positions of
the maxima are at sin § = sin 3% ”h = 1, which gives h = (n + : ) (’LQ) where
n=12...,N—2 as secondary maxima must fall in bctwoen the zeros of
intensity. This calculation is only very approximate and we can guess that
the secondary maxima will not fall exactly in the middle of two zeros. As for
the magnitude of the secondary maxima, here is an exercise:

Exercise 4.

1. Show that the intensity of the adjacent secondary maxima are, for large
N, can be approximated as,
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Ism(n - 1) _-lsm(n =N-— 2) ~ _1_.

NZT, N2, 922

Imin=2) Iy,(n=N-=3) 1

N2], N2J, T 62

2. Give a qualitative argument for the following questions

(a) Why do the secondary maxima adjacent to the principal maxima
have higher intensities than the secondary maxima that fall in the
region midway between principal maxima?

(b) The secondary maxima have their peaks not eactly in the middle
of two adjacent zeros, but closer to the side of the nearest primary
maximum, why?

In the following we will ignore these fine points, take the maxima at
the middle of the two adjacent intensity zeros, and also treat intensities
there as being just quite small compared to the principal maxima.

3. What is the width of a principal maximum? (Ans: Check the two
zeros at both sides of the principal maximum and find the width as

A=oh)

End of Exercise 4
With all these simplifying conditions, our interference pattern repeats itself at
every h,. At h = nh, we have principal maxima where intensity is I = N?I,,.
In between there are N — 1 zeros at positions L’ﬁ, 2%}, (N = 1)%} In be-
tween these zeros there are secondary maxima, with positions approximately
at 2he She (N _ %)L}{; with intensities much smaller than the principal
maxima. And the width of the principal maxima is A = 2 fl'—\,ﬁ
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In the Figure (13) below you see a periodic cell in the interference pattern.
Clearly, N-dipole result simulates the N-slit interference experiment in op-
tics.

Figure 13: Interference pattern due to N in-phase dipoles
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3. DIFFRACTION
3.1  Single slit diffraction

\‘

N

a=0 ‘"‘\}I

p
@ d
2 ‘L L

mw

Figure 14: Continuous in-phase dipole distribution parallel to the 2 axis

We consider a continuous distribution of dipoles such that

N — o0, p,— 0, suchthat Np, — P, is finite,
N — 00, a— 0, suchthat Na — d is finite.

(78)

We consider the electric field of the N-in phase dipoles given in (70) and we

see that it is convenient to make the following definitions

Na  Naksin ¢ _)ﬁ _ kdsing _ kdtan¢ @LZH
2 2 2 2 2 T 2L
b AL

:2_ =1 _H-; Where IJO — d

.o f o]
§in — =8§in fg L
2 2N 2N
We write the electric field with these new definitions

. iy N Si(kr—wt)
= 1 e g 5 (SN ) e
dre, sing T

2
1 P B B sind gihr—wt)
= e Py zetr ¢ TtaN -
dme, =\ 4 r

22
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Now the intensity can be computed easily

e 2
. = . 1dP sind
I(I‘) =< S>i= ;‘2*(-15:[(, ““7_;-—2‘ . (81)

2
with I, representing the constant intensity due to a single dipole of strength
| P,| at the origin,
1\ ckt|P,)?
I, = L (82)
4dre, ) 8mlL?

We now study the angular distribution of intensity given by Eq.(81):

1. When g8 — 0, I — I, the principal maximum.

2. Diffraction minima occurs when the intensity vanishes, I = 0. This
will happen when sz’n% = (), or in other words when

3 H
5= nmw  or [2— = W—];r; =nr (83)

Thus for H = nH, with n = +1,£2 ... we have zero intensity. (Note
that H=0 is the position of the principal maximum, and thus n = 0 is
to be excluded.)
The width of the principal maximum is 2H,, and secondary maxima
are of width H,,.

3. The secondary maxima correspond to the maximum values of I beyond
+H,. Again, to simplify the computation, we assume they occur near
the maximum values of the sin function sing = =1, this gives

5 =+ (2n + 1)?— where n = 1,2, .., and
2 2

) 3 3 ) (84)
H —_—‘...:Z“H(,, §HO, —‘2—HO, _§Ht)~“

2 -
Actually because of the term (g) , the positions above do not exactly
correspond to the positions of secondary maxima. The positions of the

secondary maxima given above are therefore only approximate.
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In the Figure (15) below you see the diffraction pattern due to a set of con-
tinuous dipole distribution. Clearly, this dipole distribution result simulates
the single-slit diffraction pattern in optics.

3l 1

28, ;

Figure 15: Diffraction pattern due to a continuous distribution of dipoles

P _qH H, = AL
/ L, - AR A




An interesting point: Note that in the diffraction pattern as d — 0 we
have the positions of the minima £H, = :i:%f‘- —» tlarge. As you make the
hole smaller, and try forcing the light not to spread, exactly the opposite
happens. Instead of going straight through the small hole, light bends more.

Quantal explanation:

1. Quantum theory of light [3] tells us that by making the hole bigger
more paths are allowed. Each path is assocaited with a complex num-
ber. Interference among complex numbers corresponding to the paths
not assocaited with straight lines cancel. Otherwise, when the hole is
smaller, there are not enough paths, and cancellation is not complete,
and light bends.

2%

A Aﬁulﬂm" 6 K )
q‘ o

-~ (Rl tope Il smal)

Figure 16: consider interference and cancellation of amplitudes representing
paths of light 3]

2. You will also study this spreading of light when the hole gets smaller
via the uncertainty principle obeyed by the photons later in the course.



3.2  Multiple slit diffraction
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Figure 17: Group of continuous in-phase dipole distributions parallel to the
2 axis

We now consider N groups of continuous set of dipoles ( NV is a finite number
now). The electric field due to a single group whose first dipole is at @; was
computed in 3.1 and given by Eq.(80). We add the electric fields of the rest
of the groups using Eq.(35)
(37277,% )
—= | %

Erota = ( ) k? Gl%
ik P (1 | emiR(@2=a) TR e—u?.(awm)) % (85)
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The middle line above represents the contribution of different groups, and
was evaluated in Eq.(70). Thus
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The intensity is easy to compute now

N 2 2
sind sinie
G R sing
3 2

o

single slit diffraction N slit interference

(87)
“ D H
where g— :7—;—\(1— sin g~ 71‘]—:0— and % = ZT—):— sin ¢ = 7r~H—O
AL AL
H =22 =2
H, d =D

and d is the length of a continuous dipole distribution, and D is the distance
between distributions.

Clearly this simulates the N-slit interference in the presence of diffraction op’}f“ .

a\{]

D ]

Figure 18: N slit interference with diffraction

Eq.(87) means that diffraction provides an envelope on the N slit interfer-
ence pattern. In the following you will see seperate sketches for the envelope
intensity and interference pattern , and a sketch of interference pattern under
the diffraction envelope.
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