Question 1:
The areal mass density of a disk of radius R is nonuniform, such that \(\sigma = ar \), where a is some constant. (a) Find the total mass of the disk as a function of a and R. Find the moment of inertia with respect to an axis which is perpendicular to the disk, (b) that passes through the center of mass, (c) that passes through the point A.

Question 2:
A long uniform rod of length L and mass M is pivoted about a horizontal, frictionless pin through one end. Another small mass of M is attached to the other end of the rod. The rod is released from rest in a vertical position, as shown in the figure. (a) Find the moment of inertia, I, of the system with respect to the pivot. At the instant the rod is horizontal (b) find the center of mass of the system, (c) the magnitude of its angular acceleration α, (d) the x and y components of the acceleration of its center of mass \vec{a}_{CM}, and (e) the components of the reaction force at the pivot, \vec{F}_{pivot}. \[I_{rod,cm} = \frac{1}{12}ML^2 \]

Question 3:
The collision between the masses is perfectly inelastic (they stick each other.) The massless spring of force constant k is initially unstretched. There is no friction.

a) Find the speeds v_1 and v_2 just after the collision.

b) Find the impulse on B at the instant of the collision.

c) Find the maximum compression of the spring.

Question 4:
A girl of mass m is standing on a plank that has a mass of $3m$. The plank, originally at rest, is free to slide on a frozen lake, which is a flat, frictionless supporting surface. The girl begins to walk along the plank at a constant speed of v relative to the plank. (a) What is the speed of the plank relative to the ice surface? (b) What is her speed relative to the ice surface?