10.7 Power Series

DEFINITIONS A power series about \(x = 0 \) is a series of the form

\[
\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n + \cdots \tag{1}
\]

A power series about \(x = a \) is a series of the form

\[
\sum_{n=0}^{\infty} c_n (x - a)^n = c_0 + c_1 (x - a) + c_2 (x - a)^2 + \cdots + c_n (x - a)^n + \cdots \tag{2}
\]

in which the center \(a \) and the coefficients \(c_0, c_1, c_2, \ldots, c_n, \ldots \) are constants.

Ex \[
\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots + x^n + \cdots = \frac{1}{1-x}, \quad |x| < 1 \Rightarrow -1 < x < 1
\]

The graphs of \(f(x) = 1/(1 - x) \) in Example and four of its polynomial approximations.
\[E_x \sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n (x-2)^n = 1 - \frac{1}{2} (x-2) + \frac{1}{4} (x-2)^2 - \ldots = \frac{1}{1 + \frac{x-2}{2}} \]

| - \frac{x-2}{2} | < 1 \Rightarrow x > 0, \ x < 4 \quad = \frac{2}{x}

For \(x = 0 \), \(\sum_{n=0}^{\infty} 2^n \), diverges.

For \(x = 4 \), \(\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + \ldots \), diverges.

The graphs of \(f(x) = \frac{2}{x} \)
and its first three polynomial approximations

Generalized Ratio Test

Let \(\sum a_n \) be any series, let \(p = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \)

(i) the series converges absolutely if \(p < 1 \).
(ii) the series diverges if \(p > 1 \).
(iii) the test gives no information if \(p = 1 \).
Ex. Find all the values of x for which the series
\[\sum_{n=1}^{\infty} \frac{(-1)^n(x+1)^n}{2^n n^2} \] is convergent.

\[p = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(x+1)^{n+1}}{2^{n+1}(n+1)^2}}{\frac{x+1}{2^n n^2}} \right| = \lim_{n \to \infty} \frac{1}{2} \left| x+1 \right| \left(\frac{n}{n+1} \right)^2 \]

\[p = \frac{1}{2} \left| x+1 \right| \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^2 = \frac{1}{2} \left| x+1 \right| \lim_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}} \right)^2 = \frac{1}{2} \left| x+1 \right| \]

The series converges absolutely if
\[\frac{1}{2} \left| x+1 \right| < 1 \Rightarrow -3 < x < 1 \]

Now, we must test the end pts $x=1$ and $x=-3$:

For $x=1$
\[\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \], converges absolutely, since it is a p-series with $p=2$.

For $x=-3$
\[\sum_{n=1}^{\infty} \frac{(-1)^n(-2)^n}{2^n n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} \], converges absolutely. \[\therefore -3 \leq x \leq 1 \]
The set of all x for which a power series is convergent is called the **interval of convergence**. Notice that for a power series of the type $\sum c_n (x-a)^n$ the ratio of two consecutive terms will always contain a term like $|x-a|$, and $r = |x-a|$ something.

If the something is positive real number, then the series converges on an interval. If the something is zero, the series has ratio $r = 0$ for all x, so converges everywhere. If the something is ∞, the series diverges everywhere except at $x=a$, where the series collapses to a_0. This consideration gives the following theorem:

THEOREM

The convergence of the series $\sum c_n (x-a)^n$ is described by one of the following three cases:

1. There is a positive number R such that the series diverges for x with $|x-a| > R$ but converges absolutely for x with $|x-a| < R$. The series may or may not converge at either of the endpoints $x = a - R$ and $x = a + R$.
2. The series converges absolutely for every x ($R = \infty$).
3. The series converges at $x = a$ and diverges elsewhere ($R = 0$).

R is called the **radius of convergence** of the power series.
\[\sum_{n=0}^{\infty} \frac{(-1)^n n! x^n}{10^n} \]

\[P = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n \cdot 10^{n+1}} \frac{n! x^n}{10^n} \right| = \frac{|x|}{10} \lim_{n \to \infty} \frac{n!}{n+1} = \infty, \]

unless \(x = 0 \)

The series converges only at \(x = 0 \).

\[\sum_{n=1}^{\infty} \frac{x^n}{n!} \]

\[P = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n! x^n}{n! x^n} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = 0 \quad \text{for all } x. \]

The series converges for all \(x \).
\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^n}{n} \]

\[p = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x-1| \lim_{n \to \infty} \frac{n}{n+1} = |x-1| \]

The series converges if \(|x-1| < 1 \Rightarrow 0 < x < 2\).

For \(x = 0\): \(\sum -\frac{1}{n} = -\sum \frac{1}{n} \), diverges

For \(x = 2\): \(\sum (-1)^n \), known to be convergent

\[\sum_{n=1}^{\infty} \frac{\arctan n}{n} \], we shall use comparison test

\[\lim_{n \to \infty} \frac{\frac{\arctan n}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\arctan n}{n} = \frac{\pi}{2} \]

\(\sum \frac{\arctan n}{n} \) and \(\sum \frac{1}{n} \) are comparable. Since \(\sum \frac{1}{n} \) is divergent, \(\sum \frac{\arctan n}{n} \) is also divergent.
Ex. \(\sum_{n=2}^{\infty} \frac{1}{n \ln(n)^s} \) we shall use the integral test

\[
\int_{2}^{\infty} \frac{dx}{x \ln(x)^s} = \left[\frac{\ln(x)^{1-s}}{1-s} \right]_{2}^{\infty} = \begin{cases}
\text{Div.} & 1-s > 0 \\
\text{Conv.} & 1-s < 0
\end{cases}
\]

Thus the series diverges for \(s < 1 \), converges for \(s > 1 \); this is for positive \(s \).

HW: study if \(s \leq 0 \) (it diverges)